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ene-3,24-dione and 9a-hydroxy-26,27-bisnorcholest-4-ene-3,24-
dione had been isolated from the fermentation broth after incu­
bation of sitosterol and campesterol with a blocked mutant of 
Mycobacterium fortuitum.16 

When the above cell-free system was supplemented with the 
electron acceptor phenazine methosulfate (2.5 jtmol), all of 2 was 
quantitatively transformed under similar conditions into a 17-keto 
steroid having chromatographic (TLC14 and HPLC15) and 
spectroscopic (UV, MS) properties corresponding to 3. Because 
5 was rapidly metabolized into 3 by intact cells of Mycobacterium 
sp. NRRL B-3805, one might surmise that 5 might be an in­
termediate in the reaction pathway. However, when either 5 or 
7 was exposed to the above cell-free system containing phenazine 
methosulfate, they were recovered unchanged. This result con­
clusively established that 5 and 7 are not intermediates of the main 
degradative pathway. Although the exact mechanism of formation 
of 5 from sitosterol is yet to be resolved, one can envisage that 
5 may originate nonenzymically from an unstable /3-keto acid 
intermediate via decarboxylation. Alternatively, it may be derived 
via a scavenger pathway involving reverse aldolytic cleavage of 
the /?-hydroxy coenzyme A derivative (see Scheme I of ref 17). 

Our investigations clearly demonstrate that the mode of mi­
crobial degradation of the sitosterol side chain proceeds via hy-
droxylation at C-26, followed by oxidation to 2, which is trans­
formed into 3 via the intermediate 1. The availability of an active 
cell-free system for the conversion of 2 into 1 allows one to define 
the key metabolic reactions taking place prior to carbon-carbon 
fission. This constitutes the subject of the accompanying com­
munication.17 
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In the previous communication,1 we established the intermediacy 
of 3-oxochol-4-en-24-oic acid (1) during the microbial conversion 
of sitosterol into 17-keto steroids. We herein report the metabolic 
fate of the branched carbons C-28 and C-29 of sitosterol and C-28 
of campesterol and demonstrate that HCO3" is incorporated onto 
the C-28 position of these phytosterols prior to carbon-carbon 
bond fission. 

Exposure of [28-14C]-3-oxo-24-ethylcholest-4-en-26-oic acid2 

(2) to the 10000Og supernatant fraction1 (5 mL, 60 mg of protein) 
of Mycobacterium sp. NRRL B-3805 in the presence of ATP (10 

(1) Fujimoto, Y.; Chen, C-S.; Szeleczky, Z.; DiTullio, D.; Sih, C. J. /. Am. 
Chem. Soc, preceding paper in this issue. 

(2) The radioactive acid, 2 (0.22 mCi/mmol), was synthesized from 3/3-
hydroxycholenic acid (Fujimoto, Y.; Sih, C J., unpublished work). The 14C 
was introduced by reaction of 30-tetrahydropyranyloxychol-4-en-24-al with 
[l-I4C]ethylmagnesium iodide ([l-14C]ethyl iodide was purchased from Am-
ersham, 57.4 mCi/mmol). It should be noted that this synthetic 2 consisted 
of a mixture of four isomers, diastereomeric at C-24 and C-25. 

yumol), coenzyme A (5 ^mol), and MgCl2 (20 /imol) in 0.05 M 
phosphate buffer, pH 7.8 for 90 min resulted in the formation 
of a radioactive volatile acid (25% incorporation). Its behavior 
on a Celite-535 partition column3 was identical with that of 
propionic acid. The product was identified by admixture with 
nonisotopic propionic acid and converted to the p-bromophenacyl 
derivative,4 mp 62.5-63 0C; its specific activity remained essen­
tially constant after three recrystallizations. Further, the HPLC5 

retention time of the isotopically labeled and authentic p-
bromophenacyl propionate was found to be identical (9.4 min). 
Schmidt degradation6 of the propionic acid revealed that the 
2-carbon of the molecule contained all of the radioactivity. This 
experiment suggested that bicarbonate ion may have been in­
corporated onto either the C-23 or the C-28 position of 2. To 
distinguish these two possibilities, we incubated 2 with the same 
cell-free system in the presence of NaH14CO3.7 In this instance, 
approximately 5% of the radioactivity was found in propionic acid. 
All of the radioactivity resided in the 1-carbon as revealed by 
Schmidt degradation.6 Also, the resulting steroidal fragment 1 
was devoid of radioactivity. These results clearly indicate that 
HCO3" was incorporated onto the C-28 position of 2. 

Since the soya sterols contain a mixture of sitosterol and 
campesterol in a ratio of 3;2,8 we should also like to establish the 
mechanism via which the campesterol side chain is degraded by 
microorganisms. Because of the relative scarcity of pure cam­
pesterol, we were unable to prepare the corresponding 26-
hydroxy-24-methylcholest-4-en-3-one (3) via hydroxylation of 
campesterol by Mycobacterium sp. "4-1". Hence 3-oxo-24-
methylcholest-4-en-26-oic acid (4) (Chart I) was synthesized as 
a mixture of four diastereomers via the following sequence of 
reactions. Treatment of 59 with methylmagnesium iodide in ether 
(4 equiv, 2 h, 25 0C) afforded the alcohol 6 in 90% yield. The 
latter was transformed into the bromide 7 (CBr4, Ph3P, pyridine, 
0 0C, 3 h) in 79% yield; NMR (CDCl3) 8 1.70 (d, 3 H), 4.0 (m, 
2 H), 4.70 (m, 1 H), 5.35 (m, 1 H). When 7 was heated in THF 
at 70 0C with an excess of the anion of diethyl methylmalonate 
(16 equiv), slow alkylation occurred (3-4 days) to yield the diester 
8 (81%); NMR 8 0.88 (d, 6 H), 1.29 (s, 3 H), 4.15 (q, 2 H). 
When 8 was heated with 4 equiv of NaCN in Me2SO for 1Oh 
at 160 0C, clean decarboethoxylation occurred to give 9 (65%); 
NMR 8 0.92 (d, 6 H), 1.02 (s, 3 H), 4.15 (q, 2 H). After cleavage 
of the THP protecting group, the resulting hydroxy ester 10 was 
saponified (EtOH/KOH/H 20, 70 0C, 11 h) to afford the acid 
11. Oppenauer oxidation of 11 afforded 4 (64%); NMR 8 0.67 
(s, 3 H), 1.16 (s, 3 H), 5.72 (s, 1 H). 

When 4 was incubated (Chart II) with the cell-free system 
of Mycobacterium sp. NRRL B-3805 under similar conditions, 
1 was isolated in approximately 50% yield, accompanied by a trace 
quantity of 26,27-bisnorcholest-4-ene-3,24-dione (12). If phe­
nazine methosulfate was included in the cell-free system, 4 was 
transformed into androst-4-ene-3,17-dione (13) as was in the case 
of 2. 

If 4 is degraded by a mechanism similar to that of 2, radioactive 
HCO3" should likewise be incorporated onto the C-28 position 
of 4 and the radiolabel should reside in acetic acid. In accord 
with this prediction, when NaH14CO3 was incubated with cell 
extracts of Mycobacterium sp. NRRL B-3805 and 4, a volatile 
acid with chromatographic properies on a Celite-535 partition 
column3 coinciding with that of acetic acid was obtained. The 
product was identified by admixture with nonisotopic acetic acid 
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and converted to the p-bromophenacyl derivative, mp 83-84 0C; 
its specific activity remained constant after three recrystallizations. 
Schmidt degradation6 of the radioactive acetic acid showed that 
the 1-carbon of the molecule contained most of the label. 

These data support the view that the cleavage of the phytosterol 
side chains by Mycobacterium sp. involves the incorporation of 

1 mol of HCO3" onto the C-28 position of the sterols, followed 
by carbon-carbon fission at C-24-C-25 and C-24-C-28, resulting 
in the formation of 1 and 2 mol of propionic acid for sitosterol, 
whereas campesterol is converted into 1 with the concomitant 
formation of 1 mol each of acetic and propionic acid. A plausible 
degradative pathway is shown in Scheme I. 
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CO2H 

13 

This degradative mechanism of the branched side chain carbons 
(C-28 and C-29) of phytosterol differs from that of the insect 
system, which cleaves the C-24-C-28 bond via dehydrogenation, 
epoxidation, and fragmentation to yield desmosterol and acet-
aldehyde.10 
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The present work addresses the possibility of generating and 
characterizing l,4,6,9-spiro[4.4]nonatetrayl (1), an organic tet-

I 2 o X = Y = H 3 

b X = D ; Y = H 
C X = H ; Y = D 

raradical. The singly occupied p orbitals of 1 interact extensively 
via spiroconjugation,2 as shown by the orbital mixing diagram in 

(1) NSF Predoctoral Fellow, 1980-1983. 
(2) Simmons, H. E.; Fukunaga, T. /. Am. Chem. Soc. 1967, 89, 5208-15. 

Hoffmann, R.; Imamura, A.; Zeiss, G. D. Ibid. 1967, 89, 5215-20. Duerr, 
H.; Gleiter, R. Angew. Chem., Int. Ed. Engl. 1978, 17, 559-69. 

Figure 1. MO interaction diagram showing the effects of spiro­
conjugation in 1. 

Table I. Product Yields from 2 

conditions 

140°C, 4 h 
hv, direct 
hv, Ph2CO sensitized 

4 

70.6° 
86.7 

2.3 

5 

29.4" 
9.6 

84.6b 

other 

3.6 
13.06 

" Control experiments indicate that 4 -* 5 under these condi­
tions. Values are for 90% conversion of 2. b These products de­
compose slowly under the reaction conditions. Values are for 
90% conversion of 2. 

Scheme I 
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Figure 1. Schweig's empirical formula for estimation of the 
spiroconjugative split in spiro[4.4]nonane derivatives predicts a 
1.96-eV gap between the b[ and a2 molecular orbitals of 1 (Dld 

symmetry).3 Ab initio calculations4 are fully consistent with this 
result. Thus, in a structural sense 1 is a tetraradical (two broken 
bonds),5 but the electronic structure is that of a biradical (two 
electrons in a degenerate pair of nonbonding MO's).6 The 
substantial energy lowering of the fy orbital could significantly 
stabilize 1 relative to a system containing four noninteracting 
radical centers. 

These and other qualitative considerations led us to speculate 
that azoalkane 2 could give rise to novel chemistry indicative of 
1. Homolysis of the C1-C4 bond in the biradical 3 obtained upon 
N2 loss from 2 relieves ca. 50 kcal/mol of strain energy and allows 
the full spiroconjugative stabilization of 1 to develop. Thus, the 
novel biradical —* tetraradical sequence 3 —• 1 seems feasible. 

The synthesis of diazene 2 is outlined in Scheme I.7 As shown 
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